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Artificial intelligence (AI) techniques offer great potential for advancing genomic 
medicine.

This report examines the intersection between these two technologies, including the 
drivers behind the recent rise of AI techniques for genomics, existing and emerging 
applications, the limitations of AI for genomic medicine, and the challenges to realising 
its full potential for health. Achieving this potential will necessitate meeting the level of 
current enthusiasm for these technologies with the impetus, resources and collective 
commitment to tackle the serious issues ahead.

We offer a set of practical recommendations for policy makers to make the most of 
the opportunities AI presents for genomic medicine, minimise harms and speed up its 
effective delivery into healthcare.

The data challenge for genomic medicine
Genomic medicine has made significant strides in recent years, but the clinical 
application of genomics continues to evolve as new knowledge and technologies 
emerge. One major challenge is the ability to make sense of extremely large volumes 
of genomic sequence data, and effectively integrate and examine it with other relevant 
information, for example other molecular or clinical data.

The rise of AI
The AI techniques machine learning and deep learning (a type of machine learning) 
offer new computational approaches to streamlining key analytical problems in 
genomic medicine. Although some machine learning methods have been applied to key 
problems in genomic analysis for many years, activity of this kind has been increasing 
recently, driven by:

	� Advances in high-performance computing 

	� Resurgence of deep learning 

	� Growing availability of resources for building machine learning models 

	� Growth of large genomic and biomedical datasets

Applications of AI in genomic medicine
Most aspects of genomic analysis have been touched in some way by machine learning 
and deep learning. These methods are being developed and applied across different 
elements of the genomic data pipeline, and to a whole spectrum of analyses, from 
single cell resolution to studies in large populations. 

Executive summary 
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These efforts offer a significant range of potential benefits that could help advance the 
clinical application of genomics by:

	� Directly facilitating the steps involved in clinical genome analysis

Examples of current activity include:

•	 Algorithms for better identification of genetic variants, including those that 
are currently difficult to accurately detect, e.g. somatic and copy-number 
variants

•	 Tools for extracting phenotype data (patient characteristics) from electronic 
health records, or analysing it e.g. deep-learning driven facial analysis to 
help inform the diagnosis of congenital conditions

•	 Tools for predicting the effect of genetic variants, such as their downstream 
impact on proteins or important molecular processes, e.g. gene expression

	� Improving understanding of genomic variation in relation to health and disease 
and accelerating discovery in genomic medicine

We are still far from a complete understanding of the relationship between genomic 
variation and many known diseases; AI techniques applied to complex or very large 
datasets can provide valuable insight, and improve the underlying knowledge base 
upon which clinical genomic analysis relies. Research underway includes:

•	 Studies to examine how cancers evolve and determine which genetic 
changes could be drivers for tumour growth

•	 Algorithms to improve the efficiency and accuracy of CRISPR, a genome 
editing technique widely used to investigate the role of genes and other DNA 
sequences

•	 Methods to integrate and analyse genomic data together with other types of 
data

Current limitations
The application of AI has yet to generate clearly improved outcomes in genomic 
medicine, and the discovery potential within genomic datasets remains largely 
untapped. To make progress, multiple interconnected issues must be addressed:

	� Data quality and accessibility
The performance of AI algorithms is affected by the volume and quality of data used 
to initially ‘train’ (i.e. develop) them, so streamlined access to high quality genomic and 
healthcare data is essential

	� Bias
Some populations are under-represented in the databases and datasets used for 
training AI algorithms. This has the potential to exacerbate existing health disparities 
for groups that are already underserved. Algorithmic bias can also arise as a result of 
the availability of data, how those data are prepared and combined, how questions are 
framed, and because of prexisting prejudices within society
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	� Expectations
Replicating the methods and results of AI studies and tools can be difficult. The 
increasing number of AI based tools for various steps of genomic data analysis will only 
make this more challenging

	� Skills and infrastructure
AI in genomics is a multidisciplinary endeavour - no single sector has a monopoly on 
all the necessary skills, expertise, data and resources needed to deliver all the potential 
benefits of AI used at scale in genomic medicine, so a focus across multiple sectors is 
needed 

	� Privacy and security
Concerns around security, confidentiality, and the ethical use of data must be 
navigated and addressed effectively, or there is a serious risk of impeding the use and 
implementation of these technologies

	� Regulation and clinical governance
The regulatory status of many AI algorithms used within clinical genomics remains 
unclear. This is influenced by whether or not the algorithm qualifies as a medical device 
or meets an unmet need. For adaptive algorithms, questions arise about the nature of 
the regulatory pathway, how they should be certified and who should be liable if their 
use results in harm

	� Uncertainty
Another area of uncertainty is how algorithms used for healthcare should meet the 
regulatory requirements for transparency and explanation within the EU General Data 
Protection Regulation. These requirements could impact on how algorithms are used for 
clinical decision making and patient management, particularly when using black box 
algorithms

Considering the significant financial investment and policy work already underway 
to deliver AI in health and care, it is vital to address the above priorities early as part 
of wider efforts to accelerate the adoption of proven AI technologies. In doing so the 
application of AI, when experts in health, genomics, regulation and ethics are working 
in concert, presents a significant opportunity to unravel the complexity encoded in our 
genomes for health benefit.
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Priorities for policy

The initial priorities for creating an environment that facilitates the 
application of AI in genomic medicine and realises its near-term 
value are to:
Establish the right conditions for facilitating AI in genomic 
medicine which includes improved digital infrastructure, data 
acquisition and management, access to specific technical skills, 
and cross-disciplinary collaborations

Prioritise the development of constructive AI tools that address 
well-defined, focused, and clinically relevant problems in genomics 
analysis and clinical genomics service delivery

Mitigate against AI bias in genomics by promoting a workforce 
and research environment that is representative of societal 
diversity, as well as monitoring and addressing sources of bias 
within training datasets

Facilitate research efforts to apply machine learning (including 
deep learning) to well-curated, high-quality genomics and 
biomedical datasets, and bridging the gap between knowledge 
discovery and clinical practice  

Support efforts driven by the clinical genomics community 
to benchmark, review, and determine the most effective use 
and integration of emerging new algorithms for clinical genome 
analysis 

Establish sector-specific strategies to address the complex 
challenges and limitations of AI in genomic medicine and research 

Establish the clinical governance arrangements for the use of 
specific AI applications in the practice of clinical genomics



Defining AI 
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Defining AI and genomics

Overview

	� AI, specifically machine learning and more recently deep learning, 
offers new computational approaches to streamline key problems in 
genomic medicine. Machine learning algorithms ‘learn’ from data to 
discover their own rules and can improve with experience 

	� Deep learning is a more flexible subset of machine learning, with a 
higher capacity for modelling complex relationships in datasets and is 
less dependent on prior domain knowledge

	� While deep learning has valuable advantages over traditional 
machine learning methods, it has its own challenges

The health applications of genomics and those of artificial intelligence (AI) have both been 
the subject of intense attention. Activity across these domains is thriving internationally, 
with multi-billion dollar projections of global market growth by 20261, 2, 3. Independently, 
genomics and AI have featured extensively within recent policy discourse and 
strategies. Both topics have been the subject of parliamentary inquiries in the UK during 
the past two years4, 5, and along with digital medicine, the transformational potential 
of these two technologies forms the backdrop for planning the future NHS healthcare 
workforce6. 

Genomics 
In recent years there has been an ongoing focus on building the UK’s genomics 
industry and genomic healthcare. This has included the 100,000 Genomes Project, the 
establishment of the NHS Genomic Medicine Service in England, ambitions to sequence 
five million genomes in five years, and plans for a new National Genomic Healthcare 
Strategy7. 

Beyond the United Kingdom, large-scale human genome sequencing initiatives are 
underway in several countries including the United States where one million genomes 
will be sequenced as part of the National Institutes of Health (NIH) ‘All of Us’ research 
program and the European 1+ Million Genomes Initiative. Globally, the number of 
medical genetic tests is growing as is the availability of direct-to-consumer genetic 
testing, leading to increasing scrutiny of its benefits, risks and limitations8, 9, 10.  

Deployment of genomic technologies is far more established within healthcare than 
the use of AI. The applications of genomic medicine span the human life cycle from 
conception to death11 and cut across many different clinical fields, including prenatal 
and reproductive health, rare diseases, cancer, infectious diseases, regenerative 
medicine (gene editing and gene therapies) and pharmacotherapy. 

There is still a tremendous amount more that genomic medicine has to offer, a point 
stressed in the 2016 annual report of the Chief Medical Officer for England, Generation 
Genome12. 



Artificial intelligence for genomic medicine 

10 PHG Foundation

A comprehensive understanding of the genome and its functions is far from complete, 
and even where knowledge exists its clinical application is often lagging. A critical 
bottleneck is in the ability to make sense of the sheer volume and complexity of 
information contained within a genome. This is where AI, specifically machine learning 
and, more recently, deep learning, holds great promise – by offering new computational 
approaches to streamline key problems in genomic medicine. 

Artificial intelligence 
AI was addressed extensively in the 2018 annual report of the Chief Medical Officer 
for England, Health 204013. In the same year a new government Office for Artificial 
Intelligence was established to oversee implementation of the UK’s AI and Data Grand 
Challenge concerning early diagnosis, innovation, prevention and treatment. Following 
a £250 million funding pledge in 2019, NHSX (the UK government unit leading on digital 
transformation of the National Health Service in England) is establishing a national AI 
lab which will facilitate cross-government, industry and academic collaborations14. 

In the past few years numerous reports and commentaries have been published on the 
potential of AI for health, and its ethical, legal, and social implications15-21. Significant 
effort is being spent on realising the benefits of AI in healthcare, especially within 
medical imaging where some of the most promising potential examples are emerging22, 23. 

More widely, there are calls to bring together medical data repositories including 
electronic health records (EHRs) and clinical expertise to realise a ‘deep learning’ 
healthcare system whereby best treatment decisions can be computationally learnt 
with the aid of AI analyses16, 24. Notably, many of the global tech giants – including 
Google, Facebook, Amazon, Microsoft and Apple – are major investors in AI and AI 
expertise and have expanded into healthcare-related innovations. These include digital 
devices and apps, health monitoring, disease diagnosis, virtual health assistants, as 
well as resources for genomic analysis. 

As a result, the debate about how to appraise and approve AI-based medical 
products is intensifying25. The US Food and Drug Administration (FDA) is one agency 
in the process of reimagining its regulatory approach around medical devices driven 
by advanced AI algorithms that continually adapt based on new data26. The UK 
Government has recently published a ‘Code of Conduct’ which sets out guidance 
for those developing, deploying and using intelligent algorithms and data-driven 
innovations in healthcare27. 

The progression of AI in healthcare is a matter of when, how, and to what extent, rather 
than if. However,  the considerable hype surrounding AI,  must not distract from its 
complex challenges and significant limitations.  

The importance of definitions 
It is important to be clear about what is meant by AI. Most references to AI within 
genomics relate to machine learning or deep learning. Although the terms are often 
used interchangeably the differences are relevant to the evolving applications within 
genomics and more widely across health and care. Explanations of the various 
terminologies surrounding AI have been provided previously15, 28, 29. The main terms 
used within this report and concepts central to the field are summarised in Table 1 (see 
appendices). 
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In brief AI is the development and use of computing systems concerned with making 
machines work in an intelligent way

	� Machine learning is an approach for achieving artificial intelligence

	� Deep learning is a branch of machine learning (figure 1) 

AI can be categorised as ‘narrow’ or ‘general’ whereby

	� Narrow AI focuses on performing one specific task e.g. playing chess or filtering 
spam emails.Whilst ‘narrow’ by name, the individual uses of the technology can 
be broad ranging and sophisticated. Narrow AI is the focus of most current AI 
developments within healthcare and other industries.

	� General AI refers to the concept of a sentient machine and one which can perform 
different types of intelligent tasks and ‘human’ reasoning. Many consider the 
possibility of ‘general’ AI to be decades away, and others consider it unfeasible 
altogether.

How machine learning and deep learning work 
The subsequent sections of this report will refer predominantly to machine learning, 
since these techniques are the main subset of AI approaches that are of increasing 
interest in genomics, as well as deep learning – a class of machine learning methods 
whose impact on biomedical disciplines has been on the rise in recent years. 

Artificial intelligence

Machine learning

Deep learning

Figure 1: Relationship between AI, machine learning and deep learning. Machine 
learning is one approach for achieving artificial intelligence; deep learning is a branch of 
machine learning. Figure does not reflect the relative sizes of each field.
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Rule-based vs. learning systems 

While there is no widely accepted definition of AI, it is generally viewed as a technology 
that enables machines to make an intelligent decision or action. The machines or 
‘intelligent agents’ might correspond to computing hardware, software, an application, 
or robotic tool. 

Some approaches to achieving AI use ‘rule-based’ programming, which combines 
human crafted rules with data to deliver an answer or output. Rule-based systems 
are a way of encoding a human expert’s knowledge into an automated system. They 
were part of the first generation of AI in medicine, with applications in clinical decision 
support systems. However the development and use of rules-based systems is 
constrained by a number of factors. They can be:  

	� Costly and time consuming to build – since they demand deep domain knowledge 
and rely on prior knowledge 

	� Challenging to develop – encoding rules for complex systems or decision 
processes is difficult

	� Inflexible – the rules are hard-coded so there is little or no capacity to ‘learn’ new 
functionality, this instead has to be delivered via manual human updates. 

Machine learning

Machine learning is a collection of techniques based on algorithms that use 
mathematical procedures to analyse patterns in data and the relationships between 
them. In contrast to rule-based programming, machine learning algorithms ‘learn’ from 
data to discover their own rules and can improve with experience. Relative to a rules-
based approach, machine learning can in principle be:

	� Less demanding to build – some machine learning techniques have a lower 
dependency on prior knowledge 

	� Less challenging to encode – since the rules for generating an output are 
established by the algorithm’s learning process 

	� More flexible – and easier to update as they are not centred on explicitly defined 
human coded rules and can instead learn through new experience (e.g. new data) 

	� More difficult to interpret – some (but not all) types of machine learning 
techniques, particularly those based on deep learning, are not easy for humans 
to interpret, making it difficult to explain the logic underpinning their outputs. By 
contrast rule-based systems are highly interpretable since their logic is explicitly 
defined by a human. 

What does machine learning do?

Broadly speaking, machine learning techniques can:

	� Make predictions or classifications by learning from a provided set of labelled 
training data. These data are a range of inputs or features (e.g. age, blood 
pressure, height / weight etc.) and outputs or outcome (e.g. onset of disease within 
n-years). This approach is known as supervised learning. 
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	� Infer underlying patterns within data without any input from the user 
(unsupervised learning). For example a set of images can be clustered into smaller 
sub-groups of related images based on patterns or features uncovered by the 
learning algorithm. 

Whatever the approach, there are some steps common to building any machine 
learning model (figure 2). They include:

1.	 Collating, selecting, and preparing relevant data that will be used for ‘training’ 
(i.e. developing) the machine learning mathematical model. Data preparation 
might include cleaning and organising the data, or adding labels if using a 
supervised approach  

2.	 Selecting an appropriate learning technique according to the problem and the 
dataset 

3.	 Developing the machine learning model using the training dataset and chosen 
learning algorithm

4.	 Iteratively improving the model by assessing its performance on independent 
datasets and further customising to optimise 

5.	 Deploying the optimised learning model if it satisfies a desired performance 
threshold, and if it meets other necessary ethical, technical, safety, operational, 
and regulatory requirements relevant to the real-world use context 

Figure 2: Overview of general steps involved in building machine learning models. 

Collect, select, 
prepare data

Train model

Improve model

Deploy model

Select learning
approach
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The goal of many machine learning tasks is to achieve a model that can make outcome 
predictions when applied to new data. To do this, when developing some machine 
learning models, selected data are randomly split into three groups for training, 
validation and testing19. 

The training data are used to build the machine learning model and the validation data 
are used to assess the model which can then be ‘tuned’ to improve performance, e.g. by 
using more training data. 

The performance of the validated model is checked using a test dataset, typically by 
comparing the model’s predictions with observed outcomes in the test dataset. This is 
a necessary step to determine if the model can generalise to predictions beyond the 
training data. To achieve good predictive accuracy, the training data must be sufficiently 
representative of the test data, and ultimately be representative of ‘real-world’ data in 
the setting where the model is intended to be deployed. 

Validating and testing the performance of a machine learning model in this context 
does not on its own mean it is ready for deployment in a medical setting. Depending 
on the intended application, other forms of evaluation are often necessary. These 
can include undertaking ‘real-world’ prospective validation studies, demonstrating 
reproducibility in different datasets, determining clinical utility (i.e. how does the 
machine learning tool impact on clinical outcomes), and examining how its use 
compares to existing practice. 

Deep learning 

Deep learning is a subset of machine learning based on large artificial neural 
networks, also called deep neural networks. Neural networks are an approach to 
machine learning in which small computational units are connected in a way that 
is loosely inspired by connections in the brain28. They consist of multiple internal 
layers of connected ‘neurons’, or nodes, where computation takes place. These nodes 
progressively detect features, e.g. pixels, from an initial input, e.g. an image. The deep 
learning process is commonly depicted as a network of nodes (figure 3), starting with a 
number of input neurons, which feed into any number of ‘hidden’ layers of nodes before 
passing to an output layer in which the final decision is presented. 

Each hidden layer of the deep learning network detects and integrates information from 
the patterns in the neurons in the layer beneath. Many deep neural networks can have 
more than 100 layers, allowing them to model highly complex relationships between the 
input and output. 

This capacity to learn and process vast quantities of data is an important advantage 
of deep learning over traditional machine learning methods. Accordingly, the growth of 
deep learning creates opportunities to leverage very large datasets for novel discoveries 
and better predictions in the data-rich fields of genomics and healthcare30. 

The main ways in which deep learning differs from machine learning are that deep 
learning is: 

	� More flexible – with a higher capacity for modelling complex relationships in 
datasets

	� Less dependent on prior domain knowledge – under the right conditions, features 
and patterns in datasets can be learnt with less expert handcrafting compared to 
other types of machine learning
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	� Data hungry – usually requiring massive amounts of training data to generate 
accurate predictions 

	� Requires greater care to train – the learning models can be prone to ‘overfitting’ 
to spurious patterns or nuances of the specific training datasets, meaning they 
may not generalise well to independent datasets

	� Computationally expensive to train – due to the large number of mathematical 
operations that must be conducted across a multilayer network with many 
connections  

	� Can be more difficult to interpret – it may not be possible to understand the logic 
used across the hidden layers of the deep neural network to reach a decision or 
output. This makes it difficult to extract biological insight or to identify weaknesses 
in the model 

Data

Input layer

Hidden layers

Output layer

Figure 3: Representation of neural network. Deep neural networks have many hidden 
layers. The input data could be an image and the output could be a prediction of what 
the image is (e.g. cat or dog). Alternatively, the input could be a DNA sequence and the 
output could be a prediction of whether the sequence corresponds to a binding site for 
proteins. Adapted from Topol (2019)16.
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Examples of common machine learning and deep learning approaches are:

Machine learning 	

	� Logistic regression 

	� Principal component analysis

	� Support vector machine 

	� Random forest

Deep learning 	

	� Feed-forward neural network 

	� Convolutional neural network

	� Recurrent neural network

	� Long short-term memory (LSTM) neural network

Broadly speaking the choice of approach – ‘standard’ machine learning vs. deep 
learning – and the specific models used for training are influenced by the datasets in 
question (e.g. type, size, variety, and distribution of data), the problem at hand, and the 
ultimate objective. 

Deep learning using convolutional neural networks (CNNs) has been especially 
successful at image processing and classification tasks, where an image is defined 
according to its visual content. Prior to the advent of CNNs relevant properties or 
characteristics of the training data known as ‘features’, had to be defined and extracted. 
CNNs can instead automatically extract and learn hierarchies of relevant features (e.g. 
pixels) from images. 



The growth of AI 
in genomics
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The growth of AI in genomics

Overview

	� There is growing need for computational approaches that can tackle 
the analysis of large heterogeneous and high-dimensional datasets. 
Machine learning can facilitate new discoveries in these datasets 
without the need to specify explicit rules to undertake these tasks

	� Machine learning could have utility across different stages of the 
genomic data pipeline. Most emerging activity in machine learning 
and deep learning within genomics is taking place within the analysis 
and interpretation phase

Genomics is the study of the entire genetic material of an organism, in humans the 
genome equates to approximately 3 billion DNA base pairs. Genomic medicine makes 
use of an individual’s genomic information to guide their clinical care and deliver more 
personalised strategies for diagnostic or therapeutic decision making. 

One of the major goals of large-scale sequencing initiatives is to advance genomic 
medicine by accelerating the identification and understanding of disease and/or 
therapeutic associated genetic variants. Contributing to this endeavour are growing 
efforts to pool population-level sequence data and link genomic data with phenotypic 
information, clinical records, and other types of multi-omics datasets (e.g. proteomics, 
transcriptomics and metabolomics). This integrative analysis of ‘omics and clinical data, 
while essential to facilitating new biomedical discoveries for personalised medicine, 
poses complex analytical and computational challenges for researchers and clinical 
services.  

As a result there is a growing need for computational approaches that can tackle the 
analysis of large heterogeneous and high-dimensional datasets (i.e. those containing 
many attributes and measurements), and methods that can more generally provide 
faster, cheaper, more scalable, and accurate analytical solutions. Such datasets may for 
example bring together:

	� Molecular data e.g. genes, proteins

	� Physiological measurements e.g. assessments of major organ systems

	� Medical imaging data e.g. CT, MRI scans

	� Other clinically relevant information e.g. family histories, histopathology

Some types of data may also comprise many dimensions, where even one sample is 
defined by hundreds or thousands of measurements, e.g. thousands of genes in one 
cell. The collective analysis of these enormous datasets is inherently complex, especially 
when the rules for discovering new insights have to be explicitly predefined, step by 
step, within the computer code. 
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This is why machine learning and deep learning are fast gaining attention in the 
world of healthcare and genomic medicine (figure 4). These techniques can generate 
predictions, or facilitate the discovery of previously unrecognised patterns and 
relationships within complex datasets, without the need to specify explicit rules to 
undertake these tasks.  

Stages in genomic data analysis

Machine learning could have utility across different stages of the genomic data pipeline: 

	� Pre-sequencing - the samples to be analysed are collected and prepared for 
sequencing. Depending on the purpose of the analysis the samples might include 
a person’s blood or a tissue of interest (e.g. tumour), or can be samples of cells or 
pathogens 

	� Sequencing - the DNA sequencer transforms the sample into raw sequence data. 
Typically this is millions of fragments of sequenced DNA known as sequence 
‘reads’  

	� Data processing - bioinformatics pipelines are used to reconstruct a genome 
sequence from the sequenced reads and to then identify ‘variants’ in the genome – 
points or regions which vary when compared to a reference genome 

Figure 4: Growth in the number of research publications archived in PubMed with 
search terms linked to artificial intelligence, and artificial intelligence and genomics 
or health. 
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	� Analysis and interpretation - involves the investigation of the identified variants 
to determine their association with and/or functional implications in disease and 
health. This is usually the most intensive and time consuming phase of the entire 
process and can vary enormously depending on the purpose of the investigation 
and extent of pre-existing data and knowledge. Clinical variant analysis may 
be used to inform diagnostic, therapeutic, and reproductive decision making. 
Research analysis can range from seeking to understand genomic variation in the 
context of populations, to the functional molecular consequences at the cellular 
level 

Most emerging activity in machine learning and deep learning within genomics is taking 
place within the analysis and interpretation phase (figure 5). The overall aim being 
to train algorithms to discover patterns in large datasets (e.g. associations between 
variants and molecular or physiological measures of health/disease), which could 
then provide new parameters for healthcare personalisation, identify new disease 
biomarkers, and refine our understanding of disease.  

Research reporting:
genomics 

knowledgebase

Clinical 
interpretation and
clinical reporting

R
aw

 data
Processed data

Genome 
sequencing

Hours

Data processing 
(incl. assembly 

and variant calling)
Hours

Days - months Analysis and
interpretation

DNA 
sample

cells / pathogen

Figure 5: The genomic data pipeline
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Machine learning and deep learning in genomics 
The application of machine learning to genetics and genomics problems is not new - it 
would be difficult to handle complex genomic data without such algorithms. In fact, the 
field of AI has existed for decades, even if there has been an AI resurgence in  recent 
years. 

The more novel aspects of machine learning within genetics and genomics are: 

	� Emergence of deep learning and its application to genomics problems 

	� Growing capacity to generate and to analyse large volumes of genomics and 
associated biomedical data at scale 

Rapid growth in machine learning activity
Several related factors are likely to have contributed to the recent expansion of machine 
learning activity in genomics and in healthcare more broadly: 

	� Improving computing power and the declining cost of hardware, making the 
use of machine learning at scale more attainable. In particular the evolution 
of computer graphics cards known as Graphical Processing Units (GPUs) has 
been game-changing for training deep learning models. GPUs are designed to 
perform the complex mathematical and geometric calculations needed for 3D 
computer graphics and advanced image processing. Since GPUs are designed to 
perform millions of mathematical operations in parallel they are also effective in 
non-graphics applications that require repetitive computation and which would 
otherwise be prohibitively expensive using the central processors of computers. 
In essence, GPUs are to deep learning research what next generation sequencing 
has been to genomics research.  

	� The resurgence of deep learning in the past six years – facilitated by increases 
in computational power - has opened up new opportunities to analyse massive 
health datasets such as medical imaging data, genomic sequence data and 
electronic health records. The volume and complexity of routinely collated 
healthcare data is increasing. Globally an estimated 2,314 exabytes of healthcare 
data will be produced in 2020 (one exabyte = one billion gigabytes)31. The ability 
of deep learning models to handle very large datasets and multiple data types as 
inputs makes these models attractive for healthcare and genomic medicine29, 32. 

	� Availability of computational frameworks and libraries for building machine 
learning models. These are essentially interfaces, tools, and sets of routines 
and functions written in a given programming language that help facilitate the 
process of training and implementing machine learning models. As many of 
these frameworks and libraries are ‘open source’ (i.e. freely available), they are 
increasing the accessibility of machine learning to the growing body of researchers 
seeking to apply these techniques.  
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	� Explosion in the volume of genomics and biomedical data, which is projected to 
exceed other major sources of big data within the next few years33. The growth 
and improving accessibility of these datasets is enabling the training of machine 
learning models. In addition, advances in biotechnology are making it possible to 
rapidly generate highly tailored datasets to test new hypotheses. This includes 
sequencing at the single cell resolution, and targeted gene editing tools to examine 
specific gene perturbations.

Finally, alongside the above factors, the expanding activity of machine learning can be 
attributed to the growing investment in the field driven by need and perceived potential. 



Existing and emerging 
applications
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Overview

	� AI is contributing important incremental improvements in clinical 
genomics analysis including phenotyping in rare diseases and cancer, 
and variant analysis and interpretation. However, the vast majority of 
AI activity in genomics is within the research phase

	� The popularity of deep learning methods for functional genomics 
analysis is rising 

	� Given the potentially significant impact of AI tools in healthcare, 
questions are being raised around the regulatory requirements and 
thresholds for evidence and validation for AI algorithms in medicine

Most aspects of genomics analysis have been touched in some way by machine 
learning and deep learning, from sequencing, phenotyping and variant identification, 
to downstream interpretation (figure 6). In fact, machine learning algorithms have been 
incorporated into bioinformatics tasks for many years, e.g. genome annotation and 
variant effect prediction. Now advances in computing, deep learning, and the growth in 
biomedical datasets are enabling improvements to existing areas of utility. 

These developments, together with the increase in open-source tools and open access 
research, are driving the expansion and growth of AI use across different types 
of genomics analyses. In addition to open-source resources, proprietary software 
providers are incorporating machine learning algorithms within their genomics analysis 
tools and services. Table 2 (see appendices) provides a (non-exhaustive) list of 
companies engaged in AI and genomics activity. 

The vast majority of AI activity in genomics is within the research phase. A great deal 
of excitement and anticipation surrounds deep learning in particular, with a large body 
of research underway deploying these methods to study the fundamental biological 
processes underlying disease34. 

Phenotyping
In a clinical context, phenotyping is the process of observing and reporting a patient’s 
features. Phenotype information can be used at several stages of a diagnostic pathway 
from informing the choice of genetic test, to supporting the interpretation of genetic 
results. Machine learning methods are being developed to extract phenotype data 
from electronic health records35, to refine phenotype classification36, and facilitate the 
analysis of phenotype data. In particular, deep learning methods to support image 
interpretation for rare disease and cancer phenotyping are showing great promise.

Existing and emerging applications
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Figure 6: AI applications and developments underway along the genomic data pipeline 
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Case study  1 

Face2Gene
The underlying technology named ‘DeepGestalt’ uses computer vision 
(image analysis and processing) and deep learning algorithms trained 
on thousands of patient cases from a phenotype-genotype database, 
to suggest genetic syndromes a patient may have based on their facial 
features. 

Currently the assumed use of the tool is in patients with a syndrome. 
When evaluated on two external test sets, the correct syndrome 
appeared in the top ten suggestions for 90% of cases40. The question 
as to whether a person has a genetic syndrome or not, was not one 
addressed by the study. 

Others have demonstrated the use of DeepGestalt to advance the 
performance of bioinformatics pipelines for exome analysis41.
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Rare diseases
For rare genetic diseases, phenotype data can include specific facial patterns since 
many syndromic genetic conditions are associated with cranio-facial dysmorphologies. 
Research to develop computer-aided facial analysis for rare diseases has been 
underway for several years37. 

Boston based company FDNA have created a smartphone-based facial image analysis 
framework, Face2Gene, to classify distinctive facial features in photos of people with 
congenital and neurodevelopmental disorders. The underpinning technology uses deep 
learning algorithms trained on tens of thousands of patient images to distinguish subtle 
facial patterns. Trained algorithms then predict the most likely genetic syndrome in 
patients through the detection of distinctive facial features in photos, and also suggest 
genes for prioritisation at the analysis stage based on the association of certain 
genotypes with specific syndromes. The aim of the tool is to support medical genetics in 
clinical and laboratory practices38.

Challenges to improving the tool include: ethnic bias in the training data sets (based 
largely on data from patients of European descent), the fragmentation of databases, 
and privacy implications surrounding the use of facial images – a sensitive yet easily 
accessible source of information. Efforts to examine these issues continue. The results 
of one study suggest that the tool could already be useful in its current form in patients 
with congenital dysmorphic syndromes in Japan39 . 

Cancers
The intersection of machine learning with genomics and imaging technologies is not 
limited to rare diseases. Histology (tissue-level) image analysis has been an important 
tool in cancer diagnosis and prognostication for over a century and is another area 
where machine learning could support phenotypic analyses. There is a growing body 
of work demonstrating the potential of deep learning, in particular to facilitate digital 
pathology workflows42. Some of this research has sought to combine pathology image 
analysis with genomics or other ‘omics based measurements for better predictive 
modelling43. 

Many of the datasets in question are high-dimensional in nature, meaning the number 
of dimensions or features being measured are very high e.g. gene expression data 
assaying thousands of genes. Examining these large high-dimensional and multi-
attribute datasets  in tandem is computationally demanding so has been challenging 
to date. However improved computing power (e.g. GPUs) in combination with deep 
learning neural networks that can process large datasets and model complex relations 
is opening opportunities to analyse and gain new insights from these combined 
datasets. 

In one study a deep learning approach integrating histology images and genomic 
data predicted the overall survival of patients diagnosed with brain tumours with the 
same or greater accuracy than human experts44. The approach used deep learning 
to learn visual patterns (from the images) and molecular biomarkers associated 
with patient outcomes. In another study an integrative model combining ‘omics data 
with histopathology images generated better prognostic predictions in stage 1 lung 
adenocarcinoma patients compared to predictions with image or ‘omics analysis alone45.  
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There is also a growing interest in leveraging large multi-attribute and high-dimensional 
datasets that fuse non-molecular measurements (e.g. radiomics – quantitative features 
extracted from digital medical images - and digital pathology imaging) with ‘omics 
data to train algorithms for prognostics and diagnostics43. However several factors 
are constraining the ability to train, validate, and deploy these algorithms in a clinical 
setting. One issue is the slow adoption of whole slide imaging technology (to convert 
glass slides into digital images of the tissue sample) – a crucial prerequisite where 
machine learning for pathology imaging is concerned. Another is the standardisation 
and aggregation of data (imaging and ‘omics) across different research or medical 
centres.

DNA sequencing 
Data obtained from any sequencing technology can contain errors and noise – and  the 
types of errors can vary depending on the sequencing method and platform. Machine 
learning can help improve accuracy in the sequencing process. 

Certain sequencing technologies rely on the capture of DNA target regions by 
complementary DNA ‘probes’, which can vary in their binding efficiency by a factor of 
10,000. To help inform the design of efficient probes, scientists have trained a machine 
learning algorithm to predict DNA binding rates from sequence data46. 

Nucleotide base-calling from raw DNA-sequencing data can be another source of error. 
Various deep learning tools have been developed to better predict base identity from 
changes in electric current measured by Oxford Nanopore long read sequencers47-49. 
Methods for improved base-calling are one approach to improving the accuracy of 
long-read sequencing which can be lower compared to certain short-read sequencing 
platforms. Deep learning may offer computational methods for addressing the accuracy, 
and by extension the clinical usability of long-read sequencing data. 

Genomic sequence data processing 

Variant identification 

Variant identification, also known as variant calling, is the bioinformatics analysis 
concerned with determining which points in an individual genome differ relative to a 
reference sequence. The accurate identification of variants is essential for correctly 
detecting variants that may underlie disease. 

While there are well-established methods for variant calling, a number of deep learning 
tools are being developed with the aim of further improving accuracy of the variant calls. 

One of these tools, Google’s ‘DeepVariant’, has outperformed existing state-of-the-
art methods on certain datasets despite the model being trained without specialised 
knowledge about genomics or next-generation sequencing50. The tool approaches 
variant calling as an image classification problem, something which deep learning 
excels at (see p.15-16), whereby genomic data is converted into images and image 
analysis is performed to classify points in the genome as a variant or non-variant. 
However this also adds to the computing overhead – the required power and resources 
– a cost which may not be justified for some purposes and settings. Collaborative 
projects are examining its utility in different use cases, including variant calling from 
long-read sequence data51, and in non-human genomes52. 
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Other groups are developing deep learning based variant callers to better address 
accuracy issues related to platform e.g. single molecule long-read sequencing 
technologies, or variants e.g. somatic cancer variants. 

Somatic genetic variants are genetic changes that are not inherited or passed onto 
progeny, but arise in particular cell subsets over time. Although most are harmless, 
some can lead to local changes in the surrounding tissue, so are of interest in research 
and for informing patient treatment in certain cancers. 

Accurately identifying somatic variants is inherently challenging given the complex 
nature of tumour biology, tumour-normal cross contamination, sequencing artefacts, 
and because these variants often occur at low frequencies. A number of machine 
learning methods53 have been applied to optimise sensitivity and specificity for 
detecting true somatic variants, and deep learning approaches are emerging too54, 55. 
The deep neural networks can learn features from observed training data, to better 
differentiate true variant calls from artefacts introduced by sequencing errors, cross 
contamination, or coverage biases55.

Copy number variants (CNVs) – a type of change where regions of DNA are deleted 
or duplicated – are another challenging-to-detect group of variants to which machine 
learning methods are being applied56. By learning genomic features from a small subset 
of validated CNVs and using data (CNV calls) from multiple existing CNV detection 
algorithms, a machine learning approach was trained to accurately identify true CNVs 
at a higher precision compared to individual CNV callers56. Improvements in accurately 
identifying this class of variants is crucial for medical genomics and research. An 
estimated 4.8–9.5% of the genome contributes to CNVs57, with some having no effect 
on health and others being implicated in a range of inherited and sporadic genetic 
disorders. 

While machine learning and deep learning are assisting in better identifying variants 
in the genome, understanding the significance of these changes remains challenging. 
Indeed variant interpretation is another area where machine learning and deep learning 
techniques are being utilised (see p.30).

Genome annotation 

Machine learning methods are used extensively to identify and classify specific 
sequences and elements within the genome – examples include features known as 
splice sites, transcription start sites, promoters, and enhancers58. These genomic 
features relate to important functional, structural, and regulatory mechanisms, so their 
accurate identification is fundamental to clinical genome analysis. 

Typically the machine learning methods learn and then detect specific patterns (e.g. 
DNA sequences) that relate to these DNA elements. Developments in high-throughput 
sequencing and functional genomics techniques (e.g. methods to analyse protein 
interaction with DNA) are generating larger and more detailed datasets that can aid 
in the discovery and prediction of these genomic features. Deep learning approaches 
are being leveraged to analyse these datasets given their higher capacity for modelling 
complexity and discovering patterns buried within the detail of these data30.

Some methods for modelling genomic features have been extended to predict how they 
are affected by genomic variants and whether this might also impact disease risk59, i.e. 
variant effect prediction (see p.30). 
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Analysis and interpretation

Variant filtering and effect prediction 

Prioritising and classifying variants on the basis of their likelihood to cause disease is 
fundamental to clinical genomics and has implications for patient care and treatment. 
Together with other sources of evidence, software programs to predict the molecular 
impact of genomic variants are widely used by clinical laboratories when assessing 
variants (functional analysis). One major consideration is the effect of genetic variants 
on proteins, since a protein’s shape determines its function and dysfunction in disease. 

Algorithms incorporated by tools such as Polyphen, Mutation Taster and CADD 
determine the degree of protein disruption caused by a given variant based on 
probabilities learned from labelled genomic data60-62. Other tools, such as Exomiser 
and eXtasy, incorporate phenotype as well as genotype information to score and rank 
disease causing variants. A challenge for clinical genomics laboratories is that different 
in silico tools can generate different predictions63. Discordant results might arise 
because of differences in the datasets underpinning the tools, user-defined variables, or 
varying performance characteristics of the algorithms. Studies have sought to compare 
the performance of various tools64 and to determine combinations of algorithms with 
increased concordance63. Updated versions of these prediction programs are often 
released over time as training data sets improve and machine learning technology 
develops.

As with other elements of the genomics pipeline, the popularity of deep learning 
methods for functional analysis is rising. Harvard researchers have published an open-
source software to predict how proteins fold based on their amino acid sequence65. 
Similarly DeepMind’s ‘AlphaFold’ tool models properties of a protein from its genetic 
sequence66. 

Machine and deep learning algorithms also exist for predicting the effect of variants 
that lie outside of protein-coding regions, in non-coding regulatory DNA67, and for 
analysis relating to other important molecular processes including gene–gene/gene–
protein/protein–protein interactions68-70, gene expression71, 72, and methylation – a type 
of chemical modification to DNA that influences gene expression73.  

Together with deep learning the growing availability of ‘omics datasets is bolstering 
research efforts to improve variant effect prediction. Strategies have included:

	�  The use of genomic data from non-human primates to predict the clinical impact 
of human variants74

	� RNA sequence data to predict variants which affect RNA splicing (an important 
process for protein diversity)75

	� DNA sequence data to predict the tissue specific gene expression effects of 
variants76. 

Over the next few years it is likely that significant in-roads will be made to improve in 
silico functional analysis and prediction of variant pathogenicity. Arguably, this progress 
will place even greater emphasis on discerning the optimal combination of algorithms 
for clinical applications. 
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Case study 2

Diagnosing lower respiratory 
tract infections
Lower respiratory tract infections (LRTI) are the leading cause of 
infectious disease-related deaths worldwide and are challenging to 
distinguish from non-infectious respiratory syndromes. 

Researchers have deployed machine learning methods towards the 
integrated analysis of sequence data derived from three core elements 
of acute airway infections (the pathogen, airway microbiome, and host 
response) to achieve accurate LRTI diagnosis in a prospective cohort of 
critically ill patients81. 

As well as combining data from both the host and pathogen, the 
analysis incorporated RNA and DNA sequence data. 

The approach remains to be validated in larger cohorts, and assessment 
is needed into the impact on clinical outcomes and the logistics of 
performing ‘omics analysis over the existing standard practice. 
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Integrated multi-omics and multi-modal data analysis 
DNA sequencing is just one of many tools for examining the functional genomics 
pathway. The ability to measure and analyse other molecular constituents of cells can 
be just as important for understanding the significance of genomic variation. In fact 
many patients referred for genetic testing will be faced with an inconclusive result due 
to the limits of our scientific knowledge, variations in cellular processes, environmental 
dynamics, and non-inherited variants. Various factors can affect the molecular 
processes between genotype and phenotype. 

To better understand the biological complexity of diseases, numerous research efforts 
are attempting to apply an integrative ‘omics approach77. Typically, studies combine 
data from multiple ‘omics technologies together with health records and, in some 
instances, environmental monitors78. Machine learning techniques are gaining traction 
for the analysis of these high-dimensional datasets, offering the advantage of being 
able to sift through large volumes of disparate data types to discover patterns79, 80. 

Clinical deployment is currently constrained by costs associated with data collection, 
storage, and analysis, as well as issues of standardisation, reproducibility and utility. 
Although medicine is a long way from routine multi-omics diagnostics, the growing 
trend for combining advanced analytics with detailed biomedical datasets will be 
key for advancing personalised medicine and addressing multifactorial diseases. One 
example is the integration of host and pathogen data to examine the manifestation of 
infectious diseases (case study 2). 

Other complex genomic data analyses 
Machine learning methods are shifting analytical capabilities and expanding the options 
available to address complex problems in other areas of genomics research involving 
large, heterogeneous, or multi-model data types. Examples include:

Population genetics

Population genetics is the study of genetic variation within populations and the factors 
which shape this variation over space and time. It is argued that supervised machine 
learning could attain greater predictive power than classical statistical estimation 
approaches widely used in population genetics. Compared to competing methods 
machine learning makes fewer assumptions and is agnostic about the processes used 
to create datasets, so could be better at recognising phenomena as they are in nature, 
rather than how scientists choose to represent them in a model82. 

Polygenic scores

Polygenic scores (PGS) discern the cumulative effect of common single nucleotide 
polymorphisms (SNPs), a type of genomic variant, which individually have a small effect 
on a trait. They have been developed as a means of investigating the genetic basis of 
complex traits, which are influenced by multiple SNPs. Although PGS are not yet widely 
used in the clinic, there is interest in utilising them for prediction of common diseases, 
with the assertion that polygenic risk prediction could potentially lead to actionable 
outcomes83. 
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Polygenic scores are calculated using polygenic models, and a limitation of these 
models is that they incorporate strict assumptions about the underlying data which do 
not necessarily reflect the complex biology of polygenic traits, and so result in reduced 
predictive efficacy. For example one assumption is that different data observations 
e.g. SNPs within genes are non-correlated, whereas in reality many complex traits 
are underpinned by different gene-gene interactions as well as the interplay between 
genetic and non-genetic (lifestyle/environmental) factors. 

It is suggested that certain machine learning methods could improve the predictive 
power of these models as they make fewer assumptions and have greater capacity to 
recognise patterns in strongly correlated data. They could also be used to develop more 
dynamic methods that better account for complex interactions e.g. between genes and 
other factors e.g. the shifting influence of genetic factors over the human lifespan83, 84.  

Microbiome studies

Microbiome studies examine all genetic material within a microbiota – the collection 
of microorganisms present at particular body sites e.g. the gut, skin. Machine learning 
methods are being applied in microbiome research to classify specific microbial 
sequences in a sample, and to investigate the link between dynamic changes in the 
microbiome and host phenotype and disease85, 86. 

Single cell analysis

Single cell analysis is the application of ‘omics technologies to individual cells. Advances 
in single cell sequencing techniques are helping to capture the complexity and diversity 
of cell populations, and provide greater detail into the molecular characteristics of 
disease. Machine learning algorithms are being trained to analyse the growing volume 
of single cell data and address interpretation issues linked to data quality, noise, and 
heterogeneity87.

Cancer evolution modelling

Cancer evolution modelling aims to determine the temporal order of genetic changes 
that occur in different cancers as they evolve and change. This information could inform 
strategies for early detection and for anticipating disease progression. Several research 
groups are developing machine learning methods to track cancer evolution and to 
determine which genetic changes are drivers for cancer growth88-90.  

Clinical decision support 

Time sensitive analyses and periodic reanalyses

Broadly speaking the value of machine learning comes from the opportunity to 
accelerate discoveries of significance to genomic medicine. A group at the Rady 
Children’s Hospital, San Diego, have applied this notion in a very literal sense by using 
machine learning to support the rapid analysis of whole genome sequence data for the 
diagnosis of critically-ill newborns in less than 24 hours91. 
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Case study 3

Automating analysis of 
genetic data
A rapid diagnosis is important for paediatric and neonatal intensive care 
unit (ICU) patients as it could hasten lifesaving changes to their care. 

A recent study deployed artificial intelligence techniques to develop 
a highly automated analysis pipeline for expediting the diagnoses of 
suspected genetic diseases in seriously ill infants. 

The pipeline incorporated clinical natural language processing – a 
branch of machine learning in which computers are taught to interpret 
linguistic data – to extract phenotypic data from EHRs and to identify 
phenotypic features associated with genetic diseases, and a process to 
automatically filter and rank likely pathogenic variants. 

Automated, retrospective diagnoses concurred with previous expert 
manual interpretation – 97% sensitivity, 99% precision in 95 children with 
97 genetic diseases. Prospective use correctly diagnosed three of seven 
seriously ill ICU infants, saving time and in each case the diagnosis 
affected treatment91. Although promising, expanding this approach to 
other settings is not straightforward. 

The analysis pipeline would need to be adapted for use in different 
hospital systems, and is predicated on the availability, capture, quality 
and completeness of data within electronic health records.
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The study authors suggest that such a rapid automated analysis pipeline could have a 
number of uses, including immediate provisional diagnosis, independent re-evaluation 
in cases where manual interpretation fails to provide a diagnosis, and the periodic 
reanalysis of unsolved cases.

The subject of re-evaluation and reanalysis of test results is coming into sharp focus as 
the use of genetic and genomic testing expands92, 93 and as associated databases and 
knowledge improve over time. As more patients are tested and larger regions of the 
genome analysed, the potential for uncertain findings increases. It is possible that in the 
future, machine learning methods could support the semi-automated and systematic 
reanalysis of variants to determine potential changes to the interpretation of existing 
test results. 

Clinical genomics result feedback 

An inherent challenge in clinical genomics is the communication of complex information 
and test results to patients and mainstream physicians. Many health systems have a 
limited pool of clinical geneticists and genetic counsellors which could be overwhelmed 
by the increasing volume of genetic testing. As a means of supplementing and scaling 
genetic counselling, companies are developing AI chatbots for patients to talk about 
genetics. 

A number of health centres are testing the ‘Genetic Information Assistant’ created by 
Clear Genetics. The tool has been used by Geisinger Health in Pennsylvania, US, for 
patients undergoing sequencing as part of their MyCode study. Another company, 
OptraHealth, has created a similar chatbot ‘GeneFAX’, as well as a digital genetics 
assistant ‘OptraGuru’ that can be queried via the virtual assistant tools Amazon Alexa 
and Microsoft Cortana. 

The growing use of direct-to-consumer (DTC) genetic testing is further accentuating the 
need to strengthen genomic literacy among the public and healthcare professionals. In 
an age where many people use the internet to search for health information, carefully 
designed and rigorously tested chatbots could play a constructive role in disseminating 
genomic knowledge. 

Drug discovery and therapeutics 

Drug discovery 

The opportunities to apply machine learning across all stages of drug discovery have 
motivated many pharmaceutical companies to invest resources into this area94. A 
comprehensive account of this activity is beyond the scope of this report. With respect 
to genomics, machine learning is being applied to these datasets for a number of 
purposes including defining disease sub-types, identifying disease biomarkers95, target 
discovery94, drug repurposing96, and predicting drug responses97. 

Many major pharmaceutical companies have AI-focused R&D initiatives or 
collaborations underway. For example, AstraZeneca and BenevolentAI are applying AI 
to genomics, chemistry and clinical data to accelerate the discovery of new potential 
drug targets. GlaxoSmithKline (GSK) has invested in consumer genetics company 
23andMe, gaining access to the datasets they hold to develop drug targets using 
machine learning. The drug-maker has also established collaborations with AI drug 
discovery companies.  
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To some extent the hype surrounding AI for pharma has been tempered by the high-
profile failure of IBM Watson Health’s Oncology AI software. The cognitive computing 
cloud platform, used by hundreds of hospitals globally, returned multiple examples 
of unsafe and incorrect treatment recommendations for cancer patients. Given the 
potential significant impact within healthcare, this example and others98 are raising 
important questions around the regulatory requirements, and thresholds for evidence 
and validation for AI algorithms in medicine25. 

Genome editing

Genome editing, whereby sections of DNA are removed, added or altered, is another 
area of therapeutics research being facilitated by machine learning. Genome editing 
techniques are widely used in research to investigate the role of genes and DNA 
sequences, and increasingly for therapeutic ends, to replace or alter a defective gene in 
patients. 

Machine learning and deep learning algorithms are being trained to increase the 
efficiency and accuracy of deploying CRISPR – currently the most versatile, cheapest, 
and simplest tool for genetic manipulation. Algorithmic methods have been developed to 
predict the activity of the editing system 99, 100, the exact changes resulting from edits101, 
and off-target effects – unintended DNA changes that can complicate or hinder use 
of the technology102. Advances in in silico predictions will be vital for enabling better 
research models to study disease and for accelerating and informing the design of safer 
and more precise therapeutics. For these reasons CRISPR technologies are rising up 
the agenda of pharmaceutical companies. GSK have announced a multi-million dollar 
partnership with the University of California to establish a CRISPR laboratory, with data 
analysis to be supported by GSK’s artificial intelligence group.  

AI for genomic medicine - conclusions

The number and range of applications for AI in genomics is rapidly expanding. While 
AI has not yet brought about a watershed moment for clinical genomics analysis, it 
is contributing important incremental improvements in the quality and accuracy of 
predictions made along the genomics analysis pipeline. Collectively these changes could 
lead to substantial progress, particularly given the escalating scale and pace of activity. 

The advantages presented by AI models for evaluating large, complex biomedical 
datasets, hold enormous potential for accelerating discoveries of significance to 
genomic medicine. As machine learning and deep learning speed up the pace of 
discovery, the key challenge will lie in bridging the research to clinic gap. 

Despite the vast potential, major hurdles remain to be addressed if AI is to live up to the 
high expectations that it will transform genomic medicine.



Considerations
for policy
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Overview

	� The accuracy of a machine learning model is highly dependent on 
the quality and reliability of the training data. Healthcare datasets 
are noisy, complex, heterogeneous, poorly annotated and generally 
unstructured 

	� Better data management, and access to specific technical skill sets, 
are key to enabling a clinical environment that can readily engage 
with advances in machine learning 

	� Challenges around transparency, privacy and security could 
undermine important efforts to build patients’ and healthcare 
professionals’ trust in AI systems

	� If left unresolved, the Eurocentric bias of genomic data could 
exacerbate existing health disparities

	� An understanding of the limitations of AI systems and reasonable 
expectations for their incorporation into healthcare is key. AI is likely 
to augment and support, rather than replace healthcare professionals

Data - improving quality, accessibility, and representation 
The ‘quick-wins’ claimed for AI are often at odds with the reality of building a 
healthcare-ready algorithm - for instance, the importance and difficulty of the initial 
steps of data curation, cleaning and preparation is often underestimated.

In an ideal scenario, training data would be fully annotated, well structured, contain 
minimal noise (corruption), and be appropriate for the specific task at hand103. In reality, 
healthcare datasets are noisy, complex, heterogeneous, poorly annotated and generally 
unstructured32. In some cases, valuable health data may not even be captured digitally 
– the most fundamental prerequisite for building AI models. For these reasons, extensive 
effort has to be expended on collating, cleaning, standardising, and formatting datasets 
before they are used to develop algorithms. 

Genomic data has several sources of error and biases including those stemming from 
differences across various laboratory sequencing kits, methods and technologies, as 
well as technical sequencing artefacts. 

The Eurocentric bias of the data is a well-recognised issue in genomics and if left 
unresolved has the potential to exacerbate existing health disparities for groups that 
are already underserved104-106. 

Considerations for policy
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Machine learning algorithms trained on datasets that are predominantly derived from 
individuals of European ancestry will be less effective than those trained on a fully 
representative dataset, and potentially even incorrect and harmful, if used to make 
predictions on individuals of non-European descent. 

Sequencing initiatives that seek to gather datasets that are representative of the 
diversity within society are one important step towards mitigating negative algorithmic 
biases. The UK government intends to include under-represented groups as part of 
the plans to sequence five million genomes107. Similarly the NIH’s ‘All of Us’ research 
program aims to sequence a diverse sampling of Americans. Greater transparency 
around the limitations of the data used for training, including the extent of diversity is 
another important area for action. 

Bias can also arise as a result of the availability of data, how those data are prepared 
and combined, how questions are framed and because of preexisting prejudices within 
society.  

Scientific research is not immune to these problems. How to assess, address, and 
mitigate against these challenges will be crucial as the deployment of machine learning 
methods on large biomedical datasets grows. 

Managing expectations 
The degree of hype surrounding AI in healthcare has yet to be equalled by the volume 
of solid evidence for clinical deployment. Descriptions in the popular press and by some 
AI companies seeking to promote their tools can project unrealistic expectations around 
the clinical readiness of AI in genomics. This is at a time where the AI field is grappling 
with what has been described as ‘a reproducibility crisis’108. 

Replicating the methods and results of AI studies is a critical component of scientific 
research, and the development of tools for medical applications. Achieving this in 
practice is not trivial. 

One factor impeding reproducibility is the inaccessibility of exact research methods, an 
algorithm’s code, or the underlying training data. This can be because the developers 
are either unwilling or unable – for technical, commercial, or privacy reasons – to share 
specific details. Even when methods and code are available, there may be insufficient 
information within the reported documentation to precisely repeat an experiment108,109. 

Certain proprietary analysis and decision support tools are marketed for their potential 
to impact genomic medicine. However details about their use of AI are scarce - while 
these platforms may facilitate data analysis, the contribution of AI could be inflated -  
making it difficult to assess the validity of their claims. 

Clinical genomic analysis incorporates machine learning algorithms at various stages, 
but this is not the same as a complete end-to-end AI-driven analysis pipeline, or one 
that negates the need for human input. Humans take key decisions about how to 
design and deploy algorithms. In fact most experts agree that AI is likely to augment 
and support, rather than replace healthcare professionals. This difference is critical from 
a regulatory perspective, because solely automated individual data processing which 
produces legal or significantly similar effects as might be the case in healthcare requires 
additional regulatory safeguards (see p.41-42).  

AI activity in genomics research and the life sciences is progressing far faster than in 
clinical practice. This has been attributed to the different standards for validation and 
regulatory oversight, as well as the willingness of the scientific community to implement16. 
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For healthcare, the thresholds for adopting new technologies are higher than for 
other sectors. Currently AI adoption in healthcare is limited by the dearth of robust, 
prospective validation in clinical settings, even before considering the crucial question of 
clinical utility. 

A lack of external validation of the predictive performance of machine learning models 
is also a challenge within research. However, research is generally better primed to take 
advantage of these algorithms. Whilst not completely seamless, research data tends 
to be curated and organised in way that makes it more amenable to AI than healthcare 
data. 

The UK Biobank, a collation of genotype data and medical information on 500,000 
participants, is one example. Established over ten years ago, the Biobank has over >150 
studies listed that purport to incorporate machine learning. The 100,000 Genomes Project 
has a specific consortium dedicated to ‘Quantitative Methods, Machine Learning and 
Functional Genomics’. 

As well as having better access to the infrastructure and personnel required for 
developing and deploying AI, the research sector tends to adapt more responsively 
to informatics developments. Improved infrastructure, better data management, and 
access to specific technical skills sets are key to enabling a clinical environment that can 
readily engage with advances in machine learning. 

Infrastructure, training and constructive collaborations 
Effective use of AI in healthcare requires robust data infrastructure, high quality 
datasets, interoperability and sharing standards15. Genomic data in particular places 
considerable demands on computing and digital storage. Moreover training deep 
learning models is computationally expensive and this constraint can restrict AI 
development to institutions with access to high-performance computing. However the 
underlying data infrastructure in the NHS is not considered fit for purpose for AI15.

The evolving demands of large-scale biomedical data analyses, and the rapid progress 
in GPU technology, means computing infrastructure must be sufficiently scalable, 
secure, flexible and accommodating of advances to meet the evolving needs of AI 
in genomics. Inflexible computer hardware systems are at risk of becoming quickly 
outdated, such that they may not be able to perform the necessary analyses.

Cloud computing services are one solution to these technical challenges. Moving to 
cloud services reduces the overhead of managing the computing infrastructure and 
offers the ability to add computational capacity on demand, in real time. Specialist 
expertise is still required to manage the interface between the cloud service and 
organisation, and to configure the platform for building AI models. 

Moreover, there are a number expectations that healthcare organisations must meet to 
ensure the safe, secure, and effective use of cloud services110. These include undertaking 
a risk assessment, monitoring implementation, and selecting a cloud service that meets 
the relevant security and regulatory requirements. The use of cloud computing can raise 
regulatory challenges if the cloud is located outside a designated geographical area111.

The successful application of AI requires a combination of expertise, spanning statistics, 
machine learning and deep learning, and genomics. The need to recruit and retain staff 
with AI knowledge was highlighted in the NHS workforce review led by Eric Topol6. 
Some of this expertise is moving from academia to industry as commercialisation 
facilitates access to state-of-the-art computing infrastructures and greater remuneration. 
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One suggestion for attracting the necessary technical skills into the NHS is to create 
long-term roles that share time between the NHS and industry and/or academia6. This 
and other strategies for fostering greater cross-discipline collaborations are paramount 
to guiding the effective and appropriate development of AI in genomics. 

The importance of domain knowledge in the specific area of genomics should not be 
underestimated, nor should the significance of understanding the environment in which 
the algorithms will be deployed. 

A poor understanding of the healthcare ecosystem and stakeholder needs, including 
thresholds for evidence and validation, has contributed to the downfall of numerous 
healthcare start-ups. A centralised agency, NHSX, has been created with responsibility 
to improve health and care by ‘giving people the technology they need'. 

A code of conduct published in 2018 clearly sets out the principles expected from those 
developing, deploying and using data-driven technologies in the NHS27. Additional 
guidance to assist in interpreting certain key principles in the code is being developed. 
NICE has developed evidence standards112 and a user guide113 to support the 
development process. 

Domain knowledge is required to inform the choice and design of the learning models. 
Depending on the problem and dataset in question, deep learning methods may not be 
the optimal option despite their growing popularity30. In fact, in some cases they may 
lead to poorer predictive performance than simpler machine learning models. 

AI in genomics is undoubtedly a team endeavour. Several  multidisciplinary and cross-
organisational interactions are underway between computing, AI, and biomedical/
genomics sectors. 

Oxford Nanopore’s MinIT, a hand-held AI supercomputer for nanopore sequencing, 
is powered by a GPU manufactured by NVIDIA, a major AI computing company. 
Separately, NVIDIA and the Scripps Research Translational Institute (San Diego) are 
collaborating to develop AI tools and infrastructure for the analysis of genomic and 
digital medical sensor data. A collaboration between Microsoft and academic research 
institutions led to a set of computational tools to inform more efficient and accurate use 
of CRISPR genome editing102. 

The trend for cross-disciplinary partnerships is likely to continue. Currently no one 
sector has a monopoly on all the necessary skills, expertise, data and resources to 
deliver the benefits of AI in genomic medicine at scale. 

Regulation, explainability and interpretation
The regulation of machine learning systems is a complex and hotly debated topic 
in technology law and policy. In the UK, for the forseeable future, EU regulations 
are expected to apply in this area, either in their current form or transposed into UK 
regulation. 

The General Data Protection Regulation (EU) 2016/678 (GDPR) grants rights to EU 
citizens as data subjects, including transparency over data use, a right to data access 
and the right to be forgotten. In addition, the EU Medical Devices Regulation (EU 
2017/745) and In vitro diagnostic Medical Devices Regulation (EU 2017/746) determine 
compliance standards for AI software that qualifies as a medical device or an in vitro 
diagnostic medical device. 
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Other jurisdictions face similar problems in trying to provide sufficient oversight of 
highly adaptive and dynamic systems incorporating complex algorithms. The legislation 
on data acquisition, product certification and product liability for algorithms will require 
clarity in light of the growing use of AI in healthcare.

Two areas are intensely occupying legal scholars and those developing machine 
learning tools for health or research. 

Does the current regulatory framework strike a fair balance between the need 
for medical innovation and patient safety?

Assuring compliance with the GDPR is likely to make the development process 
more burdensome prescribing the information to be given to data subjects, and the 
Regulation’s data minimisation requirements are likely to reduce the amount of data 
available for training models. However Article 9(2)(j) and Article 89(1) of the GDPR 
provide an exemption for research, acknowledging the need to balance the value of 
data processing in the public interest, for scientific or historical purposes against the 
rights of data subjects. Other provisions facilitate the processing of personal data for 
health and for other areas of public interest.

The medical devices regulations could have implications for AI applications that are 
used to determine disease risk and guide diagnosis for individuals. Qualification as 
a medical or in vitro diagnostic medical device will largely depend on whether the 
manufacturer intends the algorithms to be used for a medical purpose. If they qualify, 
they will be subject to the safety, performance, and quality management criteria that 
these regulations impose. 

Does the GDPR contain a right to explanation?

There has also been vigorous debate concerning the existence and nature of a right to 
explanation. A right to explanation could potentially cover both rights to transparency 
about the algorithm and its application, and specific provisions in the GDPR which 
potentially allow EU citizens to contest ‘legal effects or similarly significant’ decisions 
made about them solely using algorithms. This has aroused substantial debate as to 
when this right might be triggered, and how it might be mitigated as some machine 
learning algorithms, especially those based on deep learning, are ‘black boxes’, i.e. the 
processes between data input and decision output are opaque. 

Debate includes the extent to which a potential right might cover the internal logic of 
the algorithm and why the application of machine learning generated the outcome it 
did.  Explaining exactly why the algorithm came to the decision it did, can be impractical 
if not impossible. 

Consequently, explainable AI is emerging as a field to address how black-box decisions 
of AI systems are made. As well as the prospect of a legal right to explanation, there 
is an expectation in medicine – and in other sectors such as justice systems, and 
recruitment – for transparency, ensuring fairness and accuracy, and engendering 
trust114, 115.  

On one level, model interpretability can help to discover and avoid discriminatory or 
flawed predictions. These might, for example, have arisen due to bias, or quality issues 
in the training data. It might also make it easier to detect catastrophic failure of a model116, 117. 
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At another level, interpretable models could identify relationships in data that are 
potentially important for health. Some experts have argued that ‘the very high 
complexity of biological systems will intrinsically limit applications of current ‘black 
box’ machine learning in patient data’118. In other words, the inscrutable logic of black 
box algorithms could result in a missed opportunity to gain the causal mechanistic 
insights that are essential to understanding disease, basic biology, and identifying drug 
targets118. Indeed, commentators have suggested that for some ‘high stakes decisions’, 
interpretable models are always preferable119. 

Privacy, security, and public perception 
Various data sharing scandals have heightened public concerns around confidentiality, 
privacy and the ethical use of data. These must be recognised and addressed, or they 
risk seriously impeding the effective use of these technologies.

Among the concerns is the sharing of healthcare data with commercial organisations120. 
Past scandals have underscored the need for greater transparency about business 
models, better engagement with the wider public, as well as assurances around how 
data are used by the commercial companies. 

Collaborations between the computing/AI industry and healthcare institutions involves 
a ‘value exchange’121, for example high-end infrastructure and machine learning 
expertise in exchange for access to health datasets and medical expertise. This has 
raised important questions about how the benefits of these public-private partnerships 
are shared fairly. 

Another challenge is preserving people’s privacy when using amassed data about them. 
Data de-identification is widely regarded as the solution, but the robustness of this 
approach is being questioned in light of a growing number of cases where data have 
been re-identified. One study found that 99.98% of Americans would be correctly re-
identified in any dataset using 15 demographic attributes122. This issue is a major one 
for AI in genomic medicine as one of the major objectives is to harness the untapped 
potential of large detailed health and biomedical datasets.

An added difficulty is the vulnerability of machine learning models to a range of 
cybersecurity attacks that are increasing in sophistication. Even without sharing data, 
in certain cases, information about the training data used for a machine learned system 
can be reconstructed from the model. 

Security challenges have stimulated the development of privacy enhancing technologies 
and privacy preserving machine learning techniques123. Measures to prevent data 
breaches and actively mitigate against security risks must be a core – rather than an 
adjunct – component of genomics – AI activity. 

Another concern is the potential for the malicious or discriminatory use of AI tools. 
For example the deliberate hacking of health algorithms to cause harm, or the use of 
open-source predictive tools to reveal sensitive information about someone. Even the 
misuse of non-clinical AI tools in society could incite a negative perception of their use in 
medicine. 

The controversy surrounding facial recognition and analysis technologies in the public 
and private sectors is one example. How stakeholders and policy makers respond to 
and curb the malevolent use of AI driven tools that undertake highly sensitive analyses 
will be critical, especially as they become more easily accessible and simpler to deploy.



Unpicking the AI
web  of issues
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Overview

	� The application of AI for genomics poses multiple interconnected 
issues requiring resolution 

	� These issues cannot be effectively and sustainably addressed in 
isolation

	� Seven priority actions can go a long way towards meeting these 
policy challenges

The effective use of machine learning in genomic medicine creates a complex web of 
interrelated issues (figure 7). 

The accuracy of a machine learning model is highly dependent on reliable, high quality 
training data. Fundamental to curating better training datasets are standards for 
interoperability and systems for better data accessibility, which in turn challenges 
efforts around privacy, security, and safeguarding. Connected to nearly all other 
considerations is the importance of building patients’ and healthcare professionals’ 
trust in AI systems. Given the extent of interconnectivity, these issues are unlikely to be 
addressed effectively in isolation.  

Some of these challenges are not new to genomic medicine or even to data-driven 
healthcare. Equally many of the AI related concerns, including bias and algorithmic 
transparency, are not unique to its application within genomics. However, the marriage 
of genomics and machine learning deepens many of these pre-existing challenges, 
heightening the imperative to address them. In essence, there is an opportunity, indeed 
a necessity, to learn from different disciplines, even where sector-specific strategies are 
necessary.  

AI holds great promise for genomic medicine, but it is worth noting that there are other 
clinical disciplines and aspects of healthcare delivery more likely to see greater impact 
from AI, at least for the foreseeable future. These include medical imaging, predicting 
acute illness124, and handling repetitive administrative tasks125. 

Unpicking the AI web of issues
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Promoting explainable AI 
& algorithmic interpretability 

Deciphering legal & 
regulatory implications

Addressing issues of data 
standards, quality and curation

Adopting flexible, 
scalable computing infrastructure

Building trust & demonstrating 
trustworthiness

Establishing accountability 

Demonstrating validity & 
clinical utility 

Protecting & preserving privacy 

Enhancing security measures 

Improving interoperability  
& data accessibility

Training datasets - improving 
quality & representation

Acquiring & accessing expertise

Managing hype 

Curtailing malicious 
or discriminatory AI use 

Monitoring & addressing 
sources of bias 

Fostering cross - disciplinary 
collaborations

Figure 7: Harnessing AI for genomic medicine – priority areas for action. 
Interconnectivity between the various issues that will need to be addressed in order to 
advance the benefits of AI for genomic medicine. 
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Priorities for policy
The initial priorities for creating an environment that facilitates the 
application of AI in genomic medicine and realises its near-term value are to:

Establish the right conditions for facilitating AI in genomic medicine, 
which includes improved digital infrastructure, data acquisition and 
management, access to specific technical skills, and cross-disciplinary 
collaborations

Prioritise the development of constructive AI tools that address well-
defined, focused, and clinically relevant problems in genomics analysis and 
clinical genomics service delivery

Mitigate against AI bias in genomics by promoting a workforce and 
research environment that is representative of societal diversity, as well as 
monitoring and addressing sources of bias within training datasets

Facilitate research efforts to apply machine learning (including deep 
learning) to well-curated, high-quality genomics and biomedical datasets, 
and bridging the gap between knowledge discovery and clinical practice  

Support efforts driven by the clinical genomics community to 
benchmark, review, and determine the most effective use and integration of 
emerging new algorithms for clinical genome analysis 

Establish sector-specific strategies to address the complex challenges 
and limitations of AI in genomic medicine and research and place as 
much emphasis on addressing these challenges as on exploring the latest 
developments in AI research. These include:

	� Clarity on how different machine learning algorithms are applied 
at various stages of clinical genome analysis

	� Strategies to advance the beneficial use of AI applied to genomic 
and health data while protecting against potential harms, including 
understanding the potential trade-offs between interpretability and 
accuracy

	� Clarity about how highly adaptive and dynamic algorithms should 
be regulated. Specifically, where algorithms are highly adaptive 
(continuously responding to new data), opaque (their inner workings 
are unclear) and used for high risk decisions, there is an urgent need 
for regulatory clarity on the requirements for transparency 126 and the 
implications for product certification and for liability 

Establish the clinical governance arrangements for the use of specific AI 
applications in the practice of clinical genomics
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The way ahead
For health services facing increasing demands, the most useful applications for AI in 
genomic medicine lie in reducing analysis times, focusing the search for disease causing 
variants, and improving the accuracy of in silico predictions made along the genomic 
data pipeline. 

We are still far from a complete understanding of the relationship between genomic 
variation and many known diseases, and this is where AI techniques applied to massive 
multi-modal and multi-‘omics datasets could provide valuable insights. Currently this 
form of analysis is the preserve of research and the ability to quickly, meaningfully, and 
routinely make sense of these massive datasets to inform patient care in the clinic is still 
some way off. 

The application of AI, when experts in health, genomics, regulation and ethics are 
working in concert, presents a significant opportunity to unravel the complexity 
encoded in our genomes for health benefit.  

Despite the anticipation and excitement, AI on its own will not advance genomic 
medicine. Workforce training, considered implementation, patient and public 
engagement, robust ethical appraisals, and other types of technologies, for example 
non-AI statistical techniques, will continue to be crucial. 

Considering the significant financial investment14 and policy work already underway 
to deliver AI in health and care, it is vital to address the above priorities early as part of 
wider efforts to accelerate the adoption of proven AI technologies127.

AI is yet to transform clinical genomics, but offers considerable potential which will only 
be achieved with effective policy prioritisation and action to achieve these priorities.
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Table 1:  Definitions – Artificial intelligence, machine learning, and deep learning

Artificial intelligence (AI) 	� AI is the development and use of computing systems 
concerned with making machines work in an intelligent way

	� AI can be categorised as ‘narrow’ or ‘general’ whereby
•	 Narrow AI focuses on performing one specific 

task e.g. playing chess or filtering spam emails. 
Whilst ‘narrow’ by name, the individual uses of the 
technology can be broad ranging and sophisticated. 
Narrow AI is the focus of most current AI 
developments within healthcare and other industries.

•	 General AI refers to the concept of a sentient 
machine and one which can perform different types 
of intelligent tasks and ‘human’ reasoning. Many 
consider the possibility of ‘general’ AI to be decades 
away, and others consider it unfeasible altogether. 

Machine Learning (ML) 	� Machine learning is a subset of artificial intelligence 
that uses algorithms which learn from data rather than 
being ‘explicitly programmed’. The general objective of 
ML algorithms is to perform predictions, classifications, 
estimations or similar tasks. 

	� Statistical models and computer science are core to machine 
learning. Advances in powerful computing systems have 
helped to propel the field in recent years.

	� Training data – are the datasets used to develop and 
improve the performance of ML algorithms. 

	� Learning approaches can be classified as supervised, 
unsupervised, or semi-supervised where

•	 Supervised learning uses ‘labelled’ training data and 
prior knowledge to learn a function that can then be 
used to make predictions about new data-points

•	 Unsupervised learning is concerned with uncovering 
structure within a dataset without prior knowledge of 
how the data are organised

•	 Semi-supervised learning is a hybrid of the above two

Appendices
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Table 1: Definitions – Artificial intelligence, machine learning, and deep learning

    Deep learning (DL) 	� Deep learning is a branch of machine learning which uses 
artificial neural networks (loosely inspired by the biology of 
the brain) to learn from large datasets.  

	� A deep neural network consists of digitised inputs, e.g. 
electrocardiogram images, which are processed through 
multiple layers of the neural network that progressively 
detect features within the data and then provide an output, 
e.g. prediction of cardiac arrhythmia. 

	� ‘Deep’ is a reference to the numerous layers of the neural 
networks that enable learning. 
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Company Broad AI use General reported use of AI

Ardigen Knowledge discovery Various discovery platforms 
incorporating AI (including 
biomarkers, microbiome analysis)

BenevolentAI Drug discovery / 
development

Drug discovery platform that 
draws on mined and inferred 
biomedical data

BostonGene Therapeutic decision 
support

Software for personalised therapy 
decision making in cancer

Cambridge Cancer 
Genomics

Decision support AI platform intended to support 
oncologists to provide personalised 
cancer treatment

Clear Genetics Counselling / reporting AI chatbot for conversing with 
patients about genetics

Congenica Variant annotation / 
prioritisation

The Sapientia™ decision support 
tool incorporates third-party 
machine learning algorithms for 
genomic variant annotation and 
prioritisation

Deep Genomics Drug discovery AI driven drug discovery platform

Desktop Genetics Gene editing Deskgen AI platform uses machine 
learning to optimise CRISPR gene 
editing sequence libraries

Fabric Genomics Variant interpretation AI-driven interpretation platform 
for genomic tests; incorporates 
automated phenotype based 
interpretation

Table 2: Companies engaged in some form of AI and genomics activity (non-exhaustive) 
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Company Broad AI use General reported use of AI

FDNA Phenotyping Deep learning driven facial 
analysis software for rare disease 
phenotyping and phenotype driven 
variant prioritisation

Freenome Cancer early detection / 
treatment

AI-Genomics for early cancer 
detection & treatment

Google (Brain) Variant calling DeepVariant tool for detecting 
genomic variants

Healx Drug repurposing AI for drug matching in rare 
diseases

IBM Literature mining Watson for Genomics uses AI to 
extract data from peer-reviewed 
literature

Lantern Pharma Drug discovery / 
repurposing

AI driven platform for precision 
oncology therapeutics

Literome Literature mining Automated curation system to 
extract genomic knowledge from 
PubMed

OptraHealth Counselling / reporting AI chatbot and digital assistant 
for conversing with patients about 
genetics 

Perthera Therapeutic decision 
support

Combines AI analysis into cancer 
therapeutic matching

Philips Knowledge discovery ‘IntelliSpace Genomics’ platform 
combines customizable pipelines 
with deep learning for new 
insights

Table 2: Examples of companies engaged in some form of AI and genomics activity 
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Company Broad AI use General reported use of AI

Sequana Health Genome editing AI-designed CRISPR genome 
editing systems

SOPHiA Genetics Variant interpretation The Alamut Genova genome 
browser integrates several 
missense variant pathogenicity 
prediction tools and algorithms

Verge Genomics Drug discovery Machine learning driven drug 
discovery company focused on 
neurodegenerative diseases

WuXi NextCODE Knowledge discovery Domain-specific AI algorithms for 
biological understanding

Table 2: Examples of companies engaged in some form of AI and genomics activity (continued)
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